Heat Transfer

Analytical solutions for heat conduction

Lecturer: Jakob Hærvig

Why/why not analytical solutions?

Limitations

  • Limited to simplified geometries:
    • Infinitely long plane wall
    • Infinitely long cylinder
    • Perfect sphere
  • Limited to simple conditions with thermal symmetry:
    • Uniform and temperature-independent properties
    • Only convection on boundary with constant heat transfer coefficient, e.g. no heat generation inside, radiation on boundary etc
    • Uniform initial temperature

    Reasons to apply

  • Super fast to compute, e.g. doing millions of evaluations
  • Yield exact results, e.g. excellent for verifying numerical codes

Starting point of analytical solutions

Partial differential equation:

$$ \frac{\partial^2 T(x,t)}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T(x,t)}{\partial t} $$
  • Boundary conditions:
    • At $x=0$:

      $$ \frac{\partial T(0,t)}{\partial x} = 0 $$

      At $x=L$:

      $$ - k A \frac{\partial T(L,t)}{\partial x} = h A \left(T(L,t)-T_\infty\right) $$

  • Initial condition:
    • At $t=0$:

      $$ ~\hspace{20pt} $$

      $$ T(x,0) = T_i $$

Introduction of non-dimensional variables

Convert problem into non-dimensional form to reduce number of variables

  • Non-dimensional temperature:
  • $$ \theta(x,t) = \frac{T(x,t)-T_\infty}{T_i-T_\infty} $$
  • Non-dimensional position:
  • $$ X = \frac{x}{L} $$
  • Non-dimensional heat transfer coefficient (Biot number):
  • $$ \text{Bi} = \frac{hL}{k} $$
  • Non-dimensional time (Fourier number):
  • $$ \tau = \frac{\alpha t}{L^2} $$

Re-casting problem in non-dimensional form

Starting from original partial differential equation:

\( \frac{\partial^2 T(x,t)}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T(x,t)}{\partial t} \)

Then, inserting definitions of non-dimensional numbers:

  • Inserting $X=x/L$:
  • \( \frac{\partial^2 T(X,t)}{\partial (X\cdot L)^2} = \frac{1}{\alpha} \frac{\partial T(X,t)}{\partial t} \) \( \Rightarrow \) \( \frac{\partial^2 T(X,t)}{\partial X^2} = \frac{L^2}{\alpha} \frac{\partial T(X,t)}{\partial t} \)

  • Inserting Fourier number $\tau=\alpha t/L^2$:
  • \( \frac{\partial^2 T(X,\tau)}{\partial X^2} = \frac{\partial T(X,\tau)}{\partial \tau} \)

  • Inserting non-dimensional temperature $\displaystyle \theta=\frac{T-T_\infty}{T_i-T_\infty}$:
  • \( \frac{\partial^2 \theta(X,\tau)}{\partial X^2} = \frac{\partial \theta(X,\tau)}{\partial \tau} \)

Equation now transformed to non-dimensional form

Final formulation in non-dimensional form

Partial differential equation:

$$ \frac{\displaystyle \partial^2 T(x,t)}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T(x,t)}{\partial t} $$

Boundary conditions:

    \(\displaystyle x=0\): \(\displaystyle \quad \frac{\partial T(0,t)}{\partial x} = 0\)

    \(\displaystyle x=L\): \(\displaystyle \quad -k \frac{\partial T(L,t)}{\partial x} = h(T(L,t)-T_\infty)\)

Initial conditions:

    \(\displaystyle t=0\): \(\displaystyle \quad T(x,0) = T_i\)

Original problem:

  • 9 variables: \(T\), \(x\), \(L\), \(t\), \(k\), \(\alpha\), \(h\), \(T_i\), \(T_\infty\)

Non-dimensional partial differential equation:

$$ \frac{\partial^2 \theta(X,\tau)}{\partial X^2} = \frac{\partial T(X,\tau)}{\partial \tau} $$

Non-dimensional boundary conditions:

    \(X=0\): \(\displaystyle \quad \frac{\partial \theta(0,\tau)}{\partial X} = 0\)

    \(X=1\): \(\displaystyle \quad \frac{\partial \theta(1,\tau)}{\partial X} = -\text{Bi}\theta(1,\tau)\)

Non-dimensional initial conditions:

    \(\tau=0\): \(\displaystyle \quad \theta(X,0) = 1\)

Non-dimensional transformed problem:

  • Only 4 variables: \(\theta\), \(X\), \(\text{Bi}\), \(\tau\)

A look at the solution for a plane wall

Analytical solution:

\(\displaystyle \theta = \sum_{n=1}^\infty \frac{4 \text{sin} \lambda_n}{2\lambda_n+\text{sin}(2\lambda_n)}e^{-\lambda_n^2 \tau} \text{cos}\left(\frac{\lambda_n x}{L}\right) \)

where $\lambda_n$ are the roots of: $\lambda_n \text{tan}\lambda_n = \text{Bi}$

which we can expand as:

\( \displaystyle \theta = \textcolor{#008000}{\frac{4 \text{sin} \lambda_1}{2\lambda_1+\text{sin}(2\lambda_1)}e^{-\lambda_1^2 \tau} \text{cos}\left(\frac{\lambda_1 x}{L}\right)} + \textcolor{#524fa1}{\frac{4 \text{sin} \lambda_2}{2\lambda_2+\text{sin}(2\lambda_2)}e^{-\lambda_2^2 \tau} \text{cos}\left(\frac{\lambda_2 x}{L}\right)} + \textcolor{#00bbd6}{\frac{4 \text{sin} \lambda_3}{2\lambda_3+\text{sin}(2\lambda_3)}e^{-\lambda_3^2 \tau} \text{cos}\left(\frac{\lambda_3 x}{L}\right)} + ...\)

Example: centre temperature in insulation

Find the centre temperature in a 10 cm thick layer of insulation after 30 minutes. Initially, its temperature is 10$^\circ$C and at time $t=0$ s it's suddenly exposed to an ambient temperature of $25^\circ$C on one side. Assume its properties are:

  • Plate half thickness, $L=0.05$ m
  • Initial temperature, $T_i=10^\circ$C
  • Ambient temperature, $T_\infty=25^\circ$C
  • Heat transfer coefficient, $h=20$ W/(m$^2$K)
  • Thermal conductivity, $k=0.05$ W/(m K)
  • Thermal diffusivity, $\alpha=3\cdot 10^{-7}$ m$^2$/s

One-term approximations

  • Assume all terms for $n\geq 2$ to be zero, e.g. $\textcolor{#524fa1}{\theta_2=0}$, $\textcolor{#00bbd6}{\theta_3=0}$ ...
  • $$ \theta = \textcolor{#008000}{\frac{4 \text{sin} \lambda_1}{2\lambda_1+\text{sin}(2\lambda_1)}e^{-\lambda_1^2 \tau} \text{cos}\left(\frac{\lambda_1 x}{L}\right)} + \cancel{\textcolor{#524fa1}{\frac{4 \text{sin} \lambda_2}{2\lambda_2+\text{sin}(2\lambda_2)}e^{-\lambda_2^2 \tau} \text{cos}\left(\frac{\lambda_2 x}{L}\right)} + \textcolor{#00bbd6}{\frac{4 \text{sin} \lambda_3}{2\lambda_3+\text{sin}(2\lambda_3)}e^{-\lambda_3^2 \tau} \text{cos}\left(\frac{\lambda_3 x}{L}\right)} + ...} $$

  • Typically less than 2% error if $\tau=\alpha t / L_c^2 > 0.2$