Boundary layer (BL) structure and development for parallel flow
over an infinite flat plate
Convenient to define Reynolds number as $\text{Re}_x = x U / \nu$
Critical Reynolds number varies with surface roughness
and upstream
turbulence
Flat plate exposed to flow with free stream velocity, $U$
$\delta = y~~~~~$ where $~~~~~u(y) = 0.99U$
Note: The 99% criterion is kind of arbitrary
Flat plate exposed to flow with free stream velocity, $U$
$\displaystyle \delta^* = \int_0^{\infty} \left(1-\dfrac{u}{U}\right) \text{d}y$
$\displaystyle \theta = \int_0^{\infty} \dfrac{u}{U} \left(1-\dfrac{u}{U}\right) \text{d}y$
\(~~~~~~~~~~~~~\displaystyle \delta^*bU = \int_0^{\infty} \left( U-u\right) b \text{d}y \)
\(~~~~~~~~~~~~~~~~~~\displaystyle \delta^* = \int_0^{\infty} \left(1-\dfrac{u}{U}\right) \text{d}y \)
Divided into three regions away from the wall
Based on dimensional analysis, we obtain two dimensionless groups:
Velocity profiles in log-log plot
Boundary layer thickness $\delta$ (Blasius solution)
\( \delta = \dfrac{5x}{\sqrt{\text{Re}_x}} \)Boundary layer displacement thickness $\delta^*$ (Blasius solution)
\( \delta^* = \dfrac{1.721x}{\sqrt{\text{Re}_x}} \)Boundary layer momentum thickness $\theta$ (Blasius solution)
\( \theta = \dfrac{0.664x}{\sqrt{\text{Re}_x}} \)Note: Boundary layer thickness decreases with
increasing $\text{Re}_x$:
\( \delta \to 0 \) as \( \text{Re}_x \to \infty \)
Looking for an analytical solution..
\( \rho \) \( \bigg( \) \( u \dfrac{\partial u}{\partial x} \) \( + \) \( v \dfrac{\partial u}{\partial y} \) \( \bigg) = -\) \( \dfrac{\partial p}{\partial x} \) \( + \) \( \mu \) \( \bigg( \) \( \dfrac{\partial^2 u}{\partial x^2} \) \( + \) \( \dfrac{\partial^2 u}{\partial y^2} \) \( \bigg) \)
\( \rho \) \( \bigg( \) \( u \dfrac{\partial v}{\partial x} \) \( + \) \( v \dfrac{\partial v}{\partial y} \) \( \bigg) = -\) \( \dfrac{\partial p}{\partial y} \) \( + \) \( \mu \) \( \bigg( \) \( \dfrac{\partial^2 v}{\partial x^2} \) \( + \) \( \dfrac{\partial^2 v}{\partial y^2} \) \( + \) \( \bigg) \)
\(\dfrac{\partial u}{\partial x} \) \( + \) \(\dfrac{\partial v}{\partial y}\) \( = 0\)
\(u=v=0 \) at \(y=0\)
\(u=U \) at \(y \rightarrow \infty\)